

Pollen production of birch under differing environmental regimes in International Phenological Gardens across Europe

<u>Surendra Ranpal¹</u>, Miriam Sieverts¹, Verena Wörl¹, Franziska Kolek², Stefanie Gilles², Kira Köpke³, Maria Landgraf³, Daria Luschkova², Claudia Traidl-Hoffmann², Carmen Büttner³, Athanasios Damialis², Susanne Jochner-Oette¹

¹ Physical Geography/Landscape Ecology and Sustainable Ecosystem Development, KU Eichstätt-Ingolstadt
² Department of Environmental Medicine, Faculty of Medicine, University of Augsburg
³ Phytomedicine Division, Humboldt University, Berlin

Presenting author: surendra.ranpal@ku.de

Introduction

International Phenological Gardens

Long term phenological observation network

Cloned plant species to exclude genetic effects

Useful for phenological research as well as for **pollen production**

Introduction

- Pollen production might be higher under warmer conditions.
- However, influence of temperature on pollen production is poorly known.

Aim: To disentangle the **environmental impacts on pollen production** in the natural environment across Europe free from genetic differences.

Downy birch (*Betula pubescens* EHRH.)

KATHOLISCHE UNIVERSITÄT EICHSTÄTT–INGOLSTADT

Research area

Year	IPGs	Trees	Countries
2019	35	44	9
2020	31	36	8
2021	29	35	9
Consistent	24	28	6

Instructional manual for sample collectors

Research area: IPGs contributing samples for 3 years

	Lowest	Highest
Altitude (m a.s.l.)	13	967
Latitude	42° N	64° N
Longitude	8° W	23° E
Mean annual temperature	5.8° C	13.9° C

KATHOLISCHE UNIVERSITÄT EICHSTÄTT–INGOLSTADT

Methods

Catkins per volume $(50 \times 50 \times 50 \text{ cm}^3)$

Code	Visualization	Description
Stage 51		First green spots visible; although negligible stretching.
Stage 52	. 7.6	Catkins increase in length and show green expansion cracks.
	BBC	H code, Meier 2001
		mielie et el 2011

Damialis et al. 2011

KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT

Methods

Environmental Data: E-OBS dataset (0.1° x 0.1°)

- Monthly averages from daily gridded meteorological observations (2018-2021)
- Seasonal averages of the climatic variables were considered for the analysis

Winter		December, January and February
Spring		March, April and May
Summer	_	June, July and August
Autumn		September, October and November.

We acknowledge the E-OBS dataset from the EU-FP6 project UERRA and the Copernicus Climate Change Service, and the data providers in the ECA&D project.

Results

Reproductive metrics	Minimum	Maximum	Mean	Standard deviation
1. Flower per catkin	87	145	114	14
2. Pollen per flower	53	5.9 × 10 ⁴	1.6 × 10 ⁴	1.4 × 10 ⁴
3. Pollen per catkin	7 × 10 ³	7 × 10 ⁶	1.8 × 10 ⁶	1.6 × 10 ⁶
4. Catkins per volume	1	155	38	27

Results

Annual variation: not significant

However,

- Increasing median from 2019 to 2021,
- smallest variability in 2020, highest in 2021.

Similar results with other reproductive metrics.

Reproductive metrics	p value
Flower per catkin	0.204
Pollen per flower	0.264

Results

Annual variation: not significant

Results

Correlations: Mean Seasonal Temperature vs reproductive metrics

2019	Summer	Autumn	Winter	Spring	Mean annual
Flowers per catkin	n.s.	n.s.	n.s.	n.s.	n.s.
Pollen per flower	n.s.	n.s.	0.45 (p=0.02)	n.s.	0.37 (p=0.056)
Pollen per catkin	n.s.	n.s.	0.45 (p=0.02)	n.s.	0.38 (p=0.045)
Catkins per volume	n.s.	n.s.	0.36 (p=0.06)	n.s.	n.s.
2020	Summer	Autumn	Winter	Spring	Mean annual
Flowers per catkin	n.s.	n.s.	n.s.	n.s.	n.s.
Pollen per flower	0.40 (p=0.030)	0.36 (p=0.060)	0.49 (p=0.008)	0.42 (p=0.03)	0.46 (p=0.013)
Pollen per catkin	0.42 (p=0.030)	0.36 (p=0.060)	0.51 (p=0.006)	0.41 (p=0.03)	0.46 (p=0.013)
Catkins per volume	0.39 (p=0.040)	0.50 (p=0.006)	n.s.	0.49 (p=0.009)	0.42 (p=0.030)
2021	Summer	Autumn	Winter	Spring	Mean annual
Flowers per catkin	0.55 (p=0.003)	0.41 (p=0.030)	n.s.	0.36 (p=0.060)	n.s.
Pollen per flower	0.43 (p=0.020)	0.55 (p=0.003)	0.47 (p=0.010)	0.43 (p=0.020)	0.50 (p=0.007)
Pollen per catkin	0.47 (p=0.010)	0.56 (p=0.002)	0.48 (p=0.010)	0.49 (p=0.008)	0.52 (p=0.005)
Catkins per volume	n.s.	n.s.	n.s.	n.s.	0.41 (p=0.040)

Results

Mean annual temperatures vs Pollen per catkin

Results

Mean temperatures (2018-2021) vs. mean pollen production (2019-2021)

Other environmental factors such as relative humidity, global radiation, pollution and urban index did not show significant correlations with mean pollen production.

Conclusion

- Autumn and winter mean temperatures showed the strongest correlation to pollen production.
- > Flowers per catkin and catkins per volume were often not correlated to temperature.
- Catkins per volume might be additionally affected by masting events that could differ temporally across populations/regions.
- Up to a certain threshold (approx. mean of 10 °C) temperature does not influence pollen production a lot;
- above this threshold, there is a steep increase in pollen production.
 - Climate change will probably further increase pollen production and therefore allergy related problems.

KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT

Thank you for your attention Merci pour votre attention

